
MacDoetm_. The Macintosh Diagnoser
David B. Lavery
William D. Brooks

Abstract:

ct

2! " i

_J

N96- 12951

When the Macintosh computer was first released, the primary user was a computer
hobbyist who typically had a significant technical background and was highly motivated
to understand the internal structure and operational intricacies of the computer. In
recent years the Macintosh computer has become a widely-accepted general purpose
computer which is being used by an ever-increasing non-technical audience. This has
lead to a large base of users which have neither the interest nor the background to
understand what is happening "behind the scenes" when the Macintosh is put to use - or
what should be happening when something goes wrong.

Additionally, the Macintosh itself has evolved from a simple closed design to a complete
family of processor platforms and peripherals with a tremendous number of possible
configurations. With the increasing popularity of the Macintosh series, software and
hardware developers are producing a product for every user's need. As the complexity
of configuration possibilities grows, the need for experienced or even expert knowledge
is required to diagnose problems. This presents a problem to uneducated or casual
users. This problem indicates a new Macintosh consumer need; that is, a diagnostic
tool able to determine the problem for the user. As the volume of Macintosh products
has increased, this need has also increased.

The NASA Headquarters Office of Aeronautics and Space Technology (OAST) has
become intimately aware of these problems and needs as they installed a Macintosh II
computer on the desk of every employee (approximately 180 machines). Early in the
installation process, the user support staff received calls to assist with a large number of
problems common to multiple users. A desire was expressed for some type of aid to help
a user recognize and diagnose the most common of the problems, allowing the user
support staff to concentrate their talents on the more uncommon (and typically more
difficult) problems. Additionally, such an aid could be used as a training assistant for
new or novice user support personnel.

With this idea in mind, the authors began a project to identify and implement the
knowledge base required to recognize, diagnose, and provide suggested solutions for, the
most common problems associated with typical Macintosh use. This paper will present
the process used to develop this implementation, from the initial analysis of user
support call logs to identify the problem domain, through the use of CLIPS as the
inference engine kernel, to the completion and testing of the system prototype.

792

MacDoctor. The Macintosh Diagnoser

Executive _lmm_y

IKsr_Doctcr is the product of a graduate school project to develop a forward

chaining, rule-based diagnostic tool to determine the cause, and thus the remedy,

ifany, of a Macintosh hardware configuration problem. The problem is identified

through the traversal of a discrimination network represented in CLIPS rules.

Remedies are directly,ifnot uniquely, addressed by a given problem

determination. Future areas of research include automatic network exploration

and mapping, predictive diagnosis, domain expansion and user maintenance.

Introduction

When the Macintosh computer was first released, the primary user was a

computer hobbyist who typically had a significant technical background and was
highly motivated to understand the internal structure and operational intricacies

of the computer. In recent years the Macintosh computer has become a widely-

accepted general purpose computer which is being used by an ever-increasing
non-technical audience. This has lead to a large base of users which have neither

the interest nor the background to understand what is happening "behind the
scenes" when the Macintosh is put to use - or what should be happening when

something goes wrong.

Additionally, the Macintosh itself has evolved from a simple closed design to a
complete family of processor platforms and peripherals with a tremendous

number of possible configurations. With the increasing popularity of the
Macintosh series, software and hardware developers are producing a product for

every user's need. As the complexity of configuration possibilities grows, the

need for experienced or even expert knowledge is required to diagnose problems.

This presents a problem to uneducated or casual users. This problem indicates a
new Macintosh consumer need; that is, a diagnostic tool able to determine the

problem for the user. As the volume of Macintosh products has increased, this
need has also increased.

The NASA Headquarters Office of Aeronautics, Exploration and Technology
(OAET) has become intimately aware of these problems and needs as they

installed a Macintosh II computer on the desk of every employee (approximately

180 machines). Early in the installation process, the user support staff received

calls to assist with a large number of problems common to multiple users. A

desire was expressed for some type of aid to help a user recognize and diagnose
the most common of the problems, allowing the user support staff to concentrate
their talents on the more uncommon (and typically more difficult) problems.

Additionally, such an aid could be used as a training assistant for new or novice

user support personnel.

With this idea in mind, the authors have initiated a graduate research project to

793

identify and implement the knowledge base required to recognize, diagnose, and
provide suggested solutions for, the most common problems associated with
typical Macintosh use. This paper will present the process used to develop this
implementation, from the initial analysis of user support call logs to identify the
problem domain, through the use of CLIPS as the inference engine kernel, to the

completion and testing of the system prototype.

Probkm Statement

The objective of this project is to produce an easy-to-use, plain talking diagnostic
tool which will be capable of analyzing a user's description of a problem,
recognizing the problem condition and suggesting a solution activity. It is noted
that Apple and other vendors manufacture products with built-in test and
evaluation (BITE) capabilities. However, these are typically designed for board or
component-level investigation. The authors intend to address a higher level
implementation - a configuration diagnostic rather than a component
diagnostic.

The problem is also more complicated than the component BITE testing. Single
components are largely fixed in design. Test procedures for such components
can be predetermined. At a configuration level, test procedure designs have
added complexity in that computer configurations vary greatly depending on the
system options and peripherals that the user has chosen for the system.

Ifan automated toolwere made availableto help users track down their
configurationproblems, at leasttwo categoriesof users of the toolcan be
identified.The firstis the new, non-computer-literate users who willuse the tool
to identify and correct problem conditions on their local Macintosh systems, and
through the use of the tool gain greater degree of computer literacy. The second
class of user includes personnel assigned to assist in the diagnosis and
correction of problems for a large configuration of Macintosh systems (_help
desk" or "user consultant" staffers), who need to quickly become effective and
productive in the remote diagnosis of system problems, who would use the tool as
both a rapid training aid and a productivity enhancement utility.

Implementation Approach

Early in the definition process for _, it was realized that a forward
chaining diagnosis system would present certain implementation capabilities
which would be valuable to the development of the application. Inherent in the

design of such systems in the ability to collect an initial set of error conditions
from the user, and synthesize a set of possible solutions. As additional
information is gathered, invalid solutions are removed, until a final solution set
remains. This set can be indexed with confidence factors to indicate the expected

precision of the proposed solution. These systems are flexible, both in terms of
implementation and operation - as the knowledge base is developed there are few
restrictions on the ordering of the knowledge rules, and as the expert system is

794

used, multiple logic paths may be followed by the user to reach the same

solution. The logic structure used in the design of the questions to the user can

resemble an inverted tree, and yet the user can provide incomplete or inferred

information which allows them to move between then logical branches of the tree

and traverse the tree without being constrained by the formalism of the tree

structure.

The forward chaining expert system was selected as the best solution for

developing the Macintosh diagnoser. Based on that decision, the following

implementation decisions were made:

The CLIPS expert system shell was used to create and develop the

knowledge base and antecedent-consequent rule definitions. CLIPS is an

extensible expert system shell developed by the NASA Johnson Space Center

(JSC), with executable versions for Cray, Cyber, CDC, IBM, PC, VAX and

Apollo computers, as well as the target Macintosh platform.

Problem domain information was obtained from the NASA Headquarters

User Support Center (USC) service calllogs. The USC provides assistance

to approximately 180 Macintosh users at NASA Headquarters, by aiding

with problem diagnosis, system repair, training, and general user support.

During the past two years of operation, the USC has compiled extensive

documentation by logging problem calls and documenting the eventual

solutions provided to users. The USC made this documentation available,

and a set of typical user problems and questions which have been used has

been derived as the initialMacintosh diagnoser problem domain.

The expert knowledge for solution of the problems comes from two sources.

First, the system implementers have over two years of experience with

diagnosing Macintosh system and configuration problems, gained through

a combination of professional experience and participation with Macintosh

users groups (which involves training of new users). This learned

knowledge is used extensively to develop the knowledge base. Second, for

areas where the developers knowledge may be insufficient,the Systems

Engineering Group at the Apple Federal Government Operations officein

Reston, Virginia, was contactdd and agreed to provide documentation and

support similar to that normally supplied to the Apple field engineers.

Development of system components external to the expert system shell (user

interface, internal system status queries, etc.)were developed in the C

programming language. The CLIPS expert system shell was developed in

C, and readily incorporates external C routines.

Problem Domain Definition

The M_Doctm" domain of expertise was selected based on the availability of raw

data and the familiarity of the developers. The domain selected was the

interofficecomputer network installed in OAET, which consists of over 180

795

Macintosh II desktep computers connected via Ethernet. NASA has established
a computing facilities support staff (help desk) which is responsible for the
handling of hardware and software problems encountered by NASA personnel.
Typically the users are not extensively trained in computer technology and thus
constitute a population of novice users.

To define the problem domain to be addressed by the Mac.Ika_r application,
copies of the User Support Center calls logs were obtained, and review of the logs
was initiated. 1372 call log entries were reviewed, and the following problem
breakdown was derived:

Printing problems - networked LaserWriters
Printing problems - direct connect LaserWriters
Printing problems - networked ImageWriters
Printing problems - direct connect ImageWriters

Disk problems - SCSI devices
Disk problems - Diskette drives
NetYcomm problems - mail services
Net/comm problems - file servers
Net/comm problems - modem services
System problems
Application problems
Finder problems
I/O problems
Total:

192
0
3
7
44
21
66
18
171
6O
57
35
61
735

Note that the problem breakdown displayed above is a summary of the domain
definition that we have created. The granularity of detail worked with is
considerably greater. For example, the _printing problems- networked
LaserWriters _ line item above actually contains 28 distinct elements, each of
which represents a unique problem state to be reco .gnized by 1W._w.I)oct_r. In total,
180 distinct problems which occur within the domain were identified.

637 calls from the log entries were rejected, as they were determined to be outside
the domain of the defined problem. These include items such as: requests for
software, requests for specific training, problems pertaining to non-Macintosh

systems, etc.

Determining the problem space was the first step. The more significant task was
to build the discrimination network which would select the correct problem
identification from the problem space. Again the help desks supplied much of
the information. Each entry in the help desk log included the staff member' s
name, the problem as reported to the help desk, the procedure undertaken to
identify the problem, the problem as determined by the staff member, and the
steps taken to remedy the problem. Examination of the collection of the help
desk log entries for each distinct problem showed a similar pattern of diagnosis
and remedy. For each problem, the diagnosis and remedy were reviewed by
domain experts to insure their validity. This process resulted in classes of
problems with each problem represented by a description of the problem, a

796

unique set of symptoms which the problem will exhibit, and the remedy to the

problem. By matching the symptom set,the problem can be identified and the

remedy proscribed.

The symptom sets for the various problems were found to intersect to a high

degree. A particular symptom could often be exhibited by several different

problems. The problems were thus combined into a discriminate network or tree.
The root node of the structure represents the most discriminating symptom, that

symptom which reduces the problem space the most. For any node to be higher in

the tree, this property must be maintained. If this is maintained, traversal of the

tree will rapidly converge on the correct diagnosis.

Scope of Solution

It would be impractical to attempt to implement _r with the abilityto

recognize every problem identified in the problem domain. Instead, itwas the

developer's intent to sort the problems identified in the domain by frequency of

occurrence and then provide an implementation which will address the top 80%

of this list. The remaining 20% of the problem space includes items which tend

to be either specific to a unique system configuration, or problems which occur

with very low frequency.

Field testing of the Mac.Doctor application was arranged with the NASA User

Support Center (source of original domain information) once the application

knowledge base was established and implemented. The User Support Center

agreed to utilize the system as a training aid for new members of the USC staff to

increase productivity while the staff members are becoming familiar with the
Macintosh installation, and to distribute the application to selected end users for

evaluation and knowledge base validation. This field testing is still underway,

and feedback from the testing is being used to implement a second iteration of
Mac.Doctor.

Application Design

The design of MacDoctor separates the overall system into the following parts:
user interface, inference engine, expert knowledge representation, and
maintenance front-end.

As each of the segments was implemented, the developers were confronted with

the issue of how the contents of knowledge base would be divided between the

interface driver and the inference engine. These are the options considered:

• Have all the possible queries which may be asked of the user predefined

in the interface portion of the application, installed in dedicated dialog

boxes. The results of each query are interpreted by the interface portion

of the application and either passed to the inference engine for

incorporation within rules and further processing, or the interface

79"/

portion may act directly upon the results and process additional queries.

The advantage of this approach is that the number of communications

between the portions of the applications are minimized, and all the

queries are precompiled, which will result in minimal execution times.
The disadvantage is that any future extensions of the application will

require considerable source-level reprogramming and recompiling of the

application, and overall modularity of the application is minimized.

Additionally, any change in the logic used in the knowledge base will

require modification of both the interface and the inference portions of

the application.

Have all the possible queries which may be asked of the user predefined

in the interface portions of the application, installed in dedicated dialog
boxes. The results of each query are passed back to the inference engine

for incorporation within rules and further processing. The advantage of

this is faster processing of queries by minimizing the communication

required for the inference portion to request a query, resulting in

improved execution times. The disadvantage is that future extensions to

the application will require source-level reprogramming and

recompiling of the application.

Have all the queries defined within the inference portion of the

application, and queries are passed forward to the interface portion as

they are needed. The interface portion is basically a small set of dialog
box _shells _, which accept and display the query strings from the

inference portion, and return the query, results. The advantage of this is
that full modularity of the application is maintained, and that extensions

to the knowledge base and modifications of the rule logic will not require

recompilation of the application (it should be noted that input to the
inference portion of the application will be done via a single text file

containing the rule definitions for the knowledge base; therefore,
modifications to the rule base will require only the use of a text editor,

and not a compiler or development environment). This will significantly
ease maintainability of the application. The disadvantage is that query

requests from the inference potion of the application to the interface

portion will require more communication between the portions,
resulting in slightly decreased application performance.

The interface implementation method selected was to develop a general-case

query interface driver which will allow the inference engine to pose query text to
the inference driver for display. This will allow all of the logic,rule definitions,

query text, and suggested solutions to be located in one modular file(permitting
easier maintenance and extension), and allow the user interface to

automatically handle extensions to the knowledge base without requiring

recompilation of the application. This is done at a slight cost of system

performance, but the impact to the user is negligible.

KnowledgeRepresentation

798

Experience so far indicates that through the use of CLIPS we are able to

adequately represent the knowledge base required to address the known

problems, and a small subset of the knowledge base has been implemented to
verify this. Initial efforts concentrated on the implementation of the rules

required to recognize and suggest solutions to file server access problems. This

problem class was selected as it included most of the major elements common to
the problem space (i.e. network connectivity, supplied power, access control,
network definition, device selection, etc.). The definitions required to represent

the knowledge for this section of the application was stated with 39 rules in about

420 lines of code. As yet undetermined is the best way to encapsulate the

knowledge data separately from the knowledge base framework, to allow

extension of the rule set without fullknowledge of the CLIPS syntax and

structure (to allow maintenance of the knowledge base).

By combining the query format with properly structured rules in the knowledge

base, the search paths used to move from the initialstate to the complete problem

space have been structured to emulate a recursive binary tree, where each node

is either a query to the user or a fact inferred by the inference engine, each branch

is based on the response to the query, and each terminal leaf is a problem state.

For example, a node may consist of"is the printer is plugged in?_. The set of

possible answers determines the number of exits from the node; with this

example they might be "yes_ or _no _. This is analogous to collecting a set of facts,

the printer is plugged in or _the printer is not plugged in._ The answering of the

question corresponds to the consequent of a rule. Determining whether or not to

fire a rule and test the premise corresponds to testing for the presence of the

effects of a parent node's corresponding consequent. Continuing with the

example, the parent node is _is the printer turned on? _ with possible answers

"yes_ and _no _. The current node, _is the printer plugged in?_ is a child connected

to the _yes_ exit from the parent. In order to visitthe child,the parent node must
have been visited and exited via the _yes_ arc. Mapping this to the rule

representation, in order to firethe second rule (child node) the firstrule must
have asserted facts which allow the premise of the second rule to fire. So, in the

example, the premise of the second rule would be _if(printer turned off)_.

So translation maps answering the node's question (choosing an exit arc) to a rule

consequence and the parent's exit arc to a rule premise.

Currently, all queries to the user concerning states of the configuration require

responses which can be answered ifthe user makes some direct observation

from the workstation (i.e._is your network interface turned 'ON' or 'OFF_.').

Some problem conditions exist which cannot be uniquely isolated by direct

observation responses. For example, iftoo many users are logged on to a file

server to allow an additional user to log on, the user may not be able to tellifhe is

not being allowed access due to server overbooking or an invalid user account.
Without some external information from the server administrator, the user does

not have a mechanism to identify which of these problem conditions is true while

sitting at the workstation. Under these conditions, the current system halts and

displays a listof all the possible problem conditions which fitthe known

information and suggests sources for the external information which can

799

further isolate the exact problem. Future expansion of the system could provide

an option to wait for the user to retrieve the information and the proceed.

With regard to the formalization of the rule schemas, the rules have been

classified into these categories: phase control, queries, configuration inference,

and solution suggestion. These categories are defined as follows:

Phase control rules:

IF current-phase-completed

THEN assert-begin-next-phase

These rules act as flow control "traffic cops" during the execution of the inference

engine. The real purpose of including phase control within Mac_Doctor is to force

all queries to the user to take place before any suggested solutions are displayed.
This is an issue in those cases where the system is diagnosing multiple

problems and identifies a solution to one problem before posing all the queries

required to isolate the remaining problems.

Query rules:

IF query-phase AND device-state-needed

THEN request-state-from-user
AND assert-device-state

These rules are fired during the query phase to pose questions to the user when
information about the state of a device or configuration component is needed.

The queries are specifically designed to constrain the user to a "yes/no" or
_on/ofl _ response. The _request-state-from-user" attribute is used to define the

query string that is displayed to the user and to receive the user response. The
"assert-device-state" attribute is used to assert a fact into the fact list which

defines the state of the device, based on the response from the user. This fact,

when added to the fact list, typically fires either another query rule, a

configuration rule, or defines a terminal problem condition.

Configuration inference rule¢.

IF device-state-known
THEN assert-derived-facts

These rules are fired by facts asserted by the query rules, and are used to define

facts inferred from known device states. For example, if a user provides a

response which determines that a file server is visible, a configuration inference
rule would fire which would infer that the network interface is on, the network is

active, and the server is up.

Solution suggestion rules:

IF problem-condition-known

800

THEN assert-problem-solution

IF problem-solution-known
THEN display-problem-solution

These rules are fired by facts asserted from either query rules or configuration
inference rules, and are intended to define solutions to isolated problems and

then display the solutions to the user. The "problem-condition-known" attribute

is either a problem definition or device state which defines a problem. "Assert-

problem-solution" defines the solution text and then =display-problem-solution"

displays the text to the user.

Implementation

The implementation of Mac.Doct_ was written in Think C 3.2 on a Macintosh II.
Macintosh was chosen for its user interface and Think C for its software

development environment. The software was based on the general intention to
embed the CLIPS rule engine within a C application. CLIPS-to-application
communication was accomplished through the creation of a user function which

interacted with the user through Macintosh user interface. The user function
was defined in the CLIPS environment as a parameter returning function. The

function was passed the node's question ("Is the printer plugged in?') and
returned the user's response to the question ("yes', =no" etc). Within the CLIPS

language, the function call was embedded within an assertion. The assertion
statement were of the form:

'(assert (printer-state = (user-dialog "Is printer plugged in?" "yes" =no")))'

The user-dialog function was written in C and designed to present to first

parameter in a user dialog window with the remaining parameters as answer
buttons. The.answer buttons are mouse selectable fields on the window. The

user-dialog function creates a CLIPS symbol representing the user's selection,
such as "yes" or =no'. I This symbol is returned to the CLIPS environment and is
used in the assertion.

Future Development Directions

At this point, the future plans for the development of_r include

completion of the knowledge base to allow the application to recognize the
aforementioned 80% of the problem domain, and to fully implement the

Macintosh interface to the knowledge base and inference engine. Following that

several directions are being considered, including:

* Implementation of a "machine learning _ capability,whereby _r
will be able to record and analyze patterns of user responses which lead

to "dead ends" in the knowledge base (i.e.the user describes a problem

' Note that redundant attempts to create a CLIPS symbol simply returns the pre-existing symbol.

801

which _ does not recognize). The application could be given the

ability to analyze the response patterns and alert the knowledge base

maintainers of the occurrence of an unrecognized problem class. The

maintainers can then use this information to extend the knowledge base

of the application.

Augmentation of the information-gathering capabilities of the

application which would allow MacDoct_ to determine several system

configuration statisticsand conditions instead of requesting all status

information from the user. For example, enable the application with the

capability to query the Chooser directly to determine the currently

selected printer, rather than posing a query to the user requesting the

name of the printer.

Add a solution feedback mechanism which would allow the system to

track the solution suggestions presented to the user and verify that the

solution corrected the described problem. In those cases where the

solution and the actual problem do not match, enable the system with an

analysis capability which could determine ifan alternative solution in

the knowledge base would provide a _more correct_ answer, or ifan

extension to the knowledge base is needed to handle the actual problem.

Augment the user interface for the solution suggestions to expand the

text description of the solution to display drawings and/or animation to
better describe the corrective action required by the user. For example, if

the suggested solution is to have the user check that the LocalTalk cable

is connected to the printer port on the Mac, include an option which
would display a short animation sequence illustrating the back of the
Macintosh with a LocalTalk cable being connected.

The Authors

Dave Lavery is the Deputy Manager of the ArtificialIntelligence and Robotics

Research Program for the National Aeronautics and Space Administration

(NASA). He is currently a part-time graduate student pursuing a Masters

Degree in Computer Science at George Mason University. Contact_ 202-453-2720,

DLAVE RY@NASAMAIL.AME S.NASA. GOV

Bill Brooks is a project manager with Advanced Decision Systems in Rosslyn,

Virginia. He is currently a part time graduate student at George Mason

University, working on a Masters Degree in Systems Engineering. Contact: 703-

2A3-1611, WBROOKS@POTOMAC.ADS.COM

802

